CROSS ROADS #15 Bert Chan Independent Researcher (Hong Kong) Lenia, Life, and Intelligence AUGUST 21, 2020, 9:30PM JST

$((\bullet))$ AUGUST 21 ON YOUTUBE LIVE

This talk

- Use Lenia as example on... •
 - How to create artificial life
 - Characteristics of biological life and artificial life
 - Relationships between artificial life and artificial intelligence

Langton's Ant

Cell division

Wellcome Images via Wikipedia

How to create life

3

Artificial Life (ALife)

Software ALife swarm chemistry, virtual creature

bingweb.binghamton.edu/~sayama Wikipedia

bostondynamics.com strandbeest.com

• Simulate or create life forms to answer "What is life?", "What life can be?"

Hardware ALife Spot & Atlas, Strandbeest

Wetware ALife Synthia, Xenobot

doi:10.1126/science.1190719 cdorgs.github.io

4

Cellular Automata

- n-Dimensional grid
 - Each site has **discrete state**
 - Next state determined by neighborhood
 - Whole grid **updated** repeatedly
- Examples: ECA [S Wolfram], GoL [JH Conway]
- Generate interesting patterns, even a computer
- Used to **model** physical, chemical, social complex systems

flocc.network/model/automata conwaylife.com/wiki/Gun

Continuous CA

- From discrete to continuous by:
 - Real values (continuous states)
 - Larger neighborhood (continuous space)
 - Incremental updates (continuous time)
- Examples: LtL [KM Evans], SmoothLife [S Rafler], Lenia
- Generate geometric lifelike patterns

glider gun in Larger-than-Life

SmoothLife

csun.edu/~kme52026 youtu.be/KJe9H6qS82I

Lenia (2015)

- Futher generalize the rule:
 - Convolution with kernel
 - Update using smooth mapping
- Highly **diverse** lifeforms (400+ species)
 - Symmetric structures & regular dynamics
 - Qualitative & quantitative studies
- Video ALIFE 2018 Tokyo
- Paper Complex Systems

Extended Lenia (2019)

- Further extensions:
 - 2D → 3D or higher dimensions
 - Single neighborhood
 → multiple kernels
 - Single grid → multiple channels
- Exploding diversity
 - More **irregular** but **robust** lifeforms, more interesting phenomena
- Paper & Video ALIFE 2020 Montreal

Characteristics of ALife systems

9

Complex Systems

- = system composed of many interacting components
- Characteristics: complexity, nonlinearity, self-organization, emergence, networks, dynamical, adaptation
 - Complexity = behaviors not easily inferred from system properties
 - Nonlinearity = "the whole is more than the sum of its parts"
- Examples: snow flakes, cities, ant colonies, many **ALife systems** (e.g. Lenia), **biosphere** (life), **brain** (intelligence)
 - Study one, know others better

Self-Organization

- Characteristics:
 - Spatio-temporal patterns
 - Decentralized, distributed
 - Robust, self-repair from perturbations
- "Anti-chaos" = complex interactions \rightarrow simple patterns
 - vs. chaos = simple interactions \rightarrow complex patterns

spontaneous global order arise from local interactions of components

11

Emergence

- = irreducible property arise from local interactions of components
- Characteristics:
 - Impossible to predict
 - "The whole is more other than the sum of its parts"
- Example: H (explosive gas) + O (burning gas) \rightarrow H₂O (stable liquid)

Emergence in Lenia

- Original Lenia:
 - Morphogenesis
 - Dynamics

- Multi-kernel:
 - Individuality
 - Self-replication

- Multi-channel:
 - Division of labor
 - Polymorphism

- Multi-dimensional:
 - Polyhedral symmetry
 - 3D physiology

Emergence in Lenia

14

General Features

- Can group into species & higher orders by similarity
 - Species occupy an area in parameter space
- "Analog" structures (vs. "digitial" GoL patterns)
- Plasticity resist changes & deformations
- Close relation b/t symmetry & motility
- Complex interactions & reactions

Morphogenesis

Radial

Bilateral

Spherical

Spiral

Symmetry

Combinatorial

Irregular

Linear

Distributed

Structure

Dynamics

Linear

Zig-zag

Rotating

Gyrating

Oscillating

Stationary

Chaotic

Metamorphosis

17

Individuality

- In extended Lenia, many lifeforms able to maintain own boundaries
 - Self-containment stablize the lifeform
 - Self-defense separate from environment or each other
- Become an individual or agent
 - Interact through attractive & repulsive "forces"
 - Enable complex interactions

Individuality

Self-Replication

- Some lifeforms able to reproduce
 - usually by binary fission
 - **autocatalysis** (i.e. more reproductive when crowded)
- Self-replication + occasional death = healthy community

Self-Replication

Division of Labor

- Parts coordinate to form an **aggregated**, **coherent** lifeform
- Parts occupy specific regions, may have special roles
 - Core ("nucleus") anchor for other parts
 - Body ("cytoplasm") extent of the lifeform
 - Director ("pseudopod") guide movements
 - Trailing part ("tail")
 - Particles ("messenger"?)

head+tail

22

Polymorphism

- - Switch phenotype rearranging parts to reach stable configuration
 - Group level behaviors
 - reproducing phenotype = colony of growing population
 - immobile phenotype = tissue-like colony

• Same genotype (i.e. rule parameters) may produce multiple phenotypes

Polymorphism

"Virtual Eukaryotic Cells"

= advanced virtual lifeforms with emergent properties:

- 1. Individuality with self boundary ("cell membrane")
- 2. Internal division of labor ("organelles")
- 3. Phenotypic polymorphism ("cell differentiation")
 - various attributes: moving, stable, reproducing, etc.
- 4. Megastructure formation ("multicellularity")
- 5. Cell-cell communication (??)

"Virtual Eukaryotic Cells"

3D Structures

- 3D: Spherical and polyhedral symmetries
 - Analogous to radial symmetries in 2D
 - Internal structures arranged in tetrahedron / bipyramid / icosahedron etc.
- 3D creatures with interesting physiology
 - e.g. Snake 3D[™] grows by ingesting dots
- 4D: simple hyperspheres so far

ALife and AI

Lenia Project

Artificial Life

emergence self-organization autopoiesis

Computer Science Turing completeness parallel computing generative art

Theoretical Biology individuality informative scales definition of life

Artificial Intelligence exploratory algorithms CA as neural network open-endedness

Lenia

Mathematics geometric symmetry time series analysis

differential equation

augments

ALife & AI

- Apply Al on ALife:
 - Lenia as a playground for AI methods
 - Exploratory algorithms & genetic algorithms
 - Pattern recognition, encoding, generation (e.g. VAE, CPPN, GAN, Neural ODE)
- From ALife to AI:
 - Lenia's architecture as a neural network
 - **Open-ended** evolution

Exploratory Algorithms

- Genetic algorithm to discover new lifeforms e.g. [T Arita @NagoyaU]
 - minimum criterion: survival
- Curiosity-driven algorithms e.g. IMGEP [PY Oudever @Inria]
- Novelty search algorithms e.g. quality diversity [KO Stanley @OpenAl]
- Neuroevolution to evolve architecture e.g. CA-NEAT [S Nichele]

IMGEP algorithm

CA as Neural Network^d

- Latest architecture approaches "Recurrent **Residual Convolutional Neural Network**" (RRCNN)
 - is evolvable (neuroevolution)
 - perhaps **trainable** (back-prop)
 - what would be the loss function?
- cf. Neural CA: back-prop through CA [A Mordvintsev @Google]

Neural CA architecture

Open-Ended Evolution

- = single process generates infinite complexity forever
- Routes to OEE [T Taylor] (cf. in Lenia):
 - Exploratory (small mutations), expansive (dooropening species), transformational (extensions)
- Maybe an important component to AGI [KO Stanley @OpenAI, T Mikolov @CTU]

Radar / AI & ML

Open-endedness: The last grand challenge you've never heard of

While open-endedness could be a force for discovering intelligence, it could also be a component of Al itself.

By Kenneth O. Stanley, Joel Lehman and Lisa Soros

(a) Exploratory Open-Endedness

(b) Expansive Open-Endedness

(c) Transformational Open-Endedness

doi:10.1162/artl_a_00290 oreilly.com/radar/topics/ai-ml

Life & ALife

- Emergence of individuals / agents & macro-scale colonies
 - How to quantatively recognize individuals & macro-scales?
 - Use information theory [G Tononi, E Hoel, D Krakauer]
- Higher levels of emergence × exploding diversity = open-ended evolution?
- Creating life phenomena from scratch
 - Implications to astrobiology & origin of life?

Thank you

chakazul.github.io/lenia